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INTRODUCTION 

Of the  many processes cu r ren t ly  under development which w i l l  convert c o a l  t o  
environmentally acceptable s o l i d ,  l i qu id ,  and gaseous f u e l s  u t i l i z i n p  py ro lys i s ,  
synthes is  gas, so lvent  ex t r ac t ion ,  or hydrogenation techniques,  t he  d i r e c t  hydro- 
genation of coa l  t o  a raw gas t h a t  i s  e a s i l y  upgraded t o  p ipe l ine  qua l i t y  Is a 
promising approach. 
Energy Research Center and is known as WDRANE (I., 2). 

Such a process i s  under development by t h e  E.R.D.A., P i t t sburgh  

I I 
Brief ly ,  t h e  HYDRANE flow shee t  is a s  follows. Pulverized r a w  coa l  is fed  t o  

t h e  top  zone of t h e  hydrogas i f ie r ,  operated at 70 atm and 750°-900" C,  where i t  
f a l l s  f r ee ly  as a d i l u t e  cloud of p a r t i c l e s  through a hydrogen-rich gas  conta in ing  
some methane from t h e  lower zone. About 2 0  pc t  of t h e  carbon in t he  r a w  coa l  i s  
converted t o  methane, causing t h e  coal p a r t i c l e s  t o  lose  t h e i r  v o l a t i l e  matter and 
agglomerating c h a r a c t e r i s t i c s  and t o  form very porous, reactive char  p a r t i c l e s .  
char f a l l s  i n t o  the  lower zone, operated a t  70 atm and 900°-980" C, where hydrogen 
feed gas maintains t h e  p a r t i c l e s  i n  a f lu id i zed  s t a t e  and reacts with an  add i t iona l  
25 pc t  of t h e  carbon t o  make methane. 
dilute-phase zone and is  cleaned of entrained s o l i d s ,  t a r s  and o i l s ,  and some 
unwanted gases. 
carbon monoxide g ives  a p ipe l ine  qua l i t y ,  high-Btu, s u b s t i t u t e  n a t u r a l  gas. Char 
from t h e  lower zone of t h e  hydrogas i f ie r  is reac ted  wi th  steam and oxygen t o  make 
t h e  needed hydrogen. 

This 

The product gas  e x i s t s  from t h e  bottom of t h e  

Af te r  cleanup, c a t a l y t i c  methanation of t h e  smal l  amount o f  r e s idua l  

This process has t h e  following advantages: 

\ 

1. 

2. 

3. 

4. 

5 .  

6 .  

External hydrogen consumption per  un i t  of methane produced i s  
low because the  hydrogen already i n  the  c o a l  is e f f i c i e n t l y  
u t i l i z e d ,  

Process cos ts  assoc ia ted  with coa l  pretreatment,  inherent  i n  
o the r  coa l  conversion processes based on caking bituminous c o a l  
feedstocks,  a r e  eliminated, 

95 percent of the  product methane is produced d i r e c t l y  i n  t h e  
hydrogas i f ie r  thus requi r ing  very l i t t l e  c a t a l y t i c  methanation, 

Simple r eac to r  design, 

Produces law-sulfur char  byproduct f o r  hydrogen peneration and low- 
s u l f u r  t a r s ,  and 

U t i l i z e s  sens ib l e  hea t  of the r e s idua l  char from the  hydrogas i f ie r  
i n  t h e  hydrogen generation p lan t .  

Because of these advantages, coa l  and oxygen ( the  c o s t l i e s t  items i n  g a s i f i c a t i o n )  
requirements a r e  minimized f o r  t he  process,  and thermal e f f i c i ency  and carbon u t i l i z a t i o n  
a r e  high a t  78 pc t  and 44 p c t ,  respec t ive ly  (2, 4). 



104 

Much of t h e  hydrogas i f ica t ion  k i n e t i c  da ta  on the  labora tory  s c a l e ,  f r e e - f a l l ,  

I n  t h i s  paper w e  review previous and some recent  
dilute-phase reac tor  has  a l ready  been published (5, 5) as w e l l  as d a t a  from a 
semiflow bench-scale r e a c t o r  (1). 
k i n e t i c  da t a  w i t h  regard t o  t h e  type of reac tor  used t o  obta in  the  da t a ,  and the  
e f f e c t  of t h e  type of r eac to r  on the  conversion data.  
mineral  elements i n  t h e  coal during hydrogas i f ica t ion  and t h e  char  y i e l d  are shown 
t o  be r e l a t e d  t o  t h e  carbon conversion regard less  of t h e  r eac to r  geometry used, so 
t h a t  t he  cons t i t uen t  conversions can be ca lcu la ted  once the  carbon conversion i s  
known. This s impl i f i e s  t h e  r e a c t o r  design i n  t h a t  only t h e  carbon conversion need 
be k i n e t i c a l l y  defined f o r  a p a r t i c u l a r  reac tor  geometry. 

The conversion of the  non- 

EXPERIMENTAL REACTORS 

"Hot-Rod" Reactors (HR) 

I n  1955 E l  Paso Natura l  Gas Company entered i n t o  a cooperative agreement wi th  
t h e  then U.S. Bureau of Mines Synthe t ic  Fuels Research Branch t o  inves t iga t e  t h e  
hydrogenation of a subbituminous New Mexico coa l  t o  produce high-Btu gas  and low- 
b o i l i n g  aromatics. P a r t  of t h e  agreement ca l led  f o r  tests i n  a r eac to r  i n  which dry 
coa l  could b e  rap id ly  brought t o  t h e  des i red  opera t ing  temperature and pressure.  
normal autoclave requi red  over an hour t o  reach temperature. 
of t he  hea t ing  and cooling cyc les  on t h e  reac t ion  could n o t  be  discerned. 
Hiteshue conceived the  apparatus known as the  "hot-rod" r eac to r  and completed t h e  E l  Paso 
p ro jec t  using it. 
Hiteshue, Anderson, and Schles inger  i n  1957 (i) and aga in  dur ing  1960-1964 (2 ,g ) .  

A 
Consequently, t h e  e f f e c t  

In  late 1955, 

The apparatus along wi th  conversion d a t a  were f i r s t  reported by 

The "hot-rod" r eac to r ,  shown i n  F igure  1, was a 70-inch long s t a i n l e s s  steel 
tube (type 304) having a 5/16-inch i n s i d e  diameter and a 5/8-inch outs ide  diameter. 
A coa l  o r  char  sample weighing 8 grams and screened t o  30 x 60 U.S. s i eve  s i z e  was 
i n s e r t e d  i n t o  the  tube  between two porous s t a i n l e s s  s t e e l  d i sks  such t h a t  a 32-inch 
length  w a s  ava i l ab le  t o  f l u i d i z e  t h e  sample. 
cur ren t  by connecting i t  t o  a transformer tha t  wae capable o f  supplying 700 amperes 
a t  9 vol t s .  W i t h  t h i s  method o f  hea t ing ,  t h e  r eac to r ,  sample, and feed  gas w e r e  
heated from room temperature t o  800' C i n  about 2 minutes and t o  1200' C i n  about 
4 minutes, A t  the end of t h e  experiments, the  r eac to r  and sample were cooled t o  
room temperature in about 10 seconds by spraying with co ld  water.  The flowsheet 
of t he  e n t i r e  apparatus is shown i n  Figure 2 and has been discussed i n  d e t a i l  i n  
t he  previously c i t e d  re ferences ,  

Free-Fall D i l u t e  Phase Reactor (FDP) 

The tube w a s  heated wi th  e l e c t r i c a l  

The agglomeration of bituminous coa l s  i n  hydrogen is a major problem i n  
designing a r eac to r  f o r  t h e i r  continuous hydrogenation t o  produce a high-Btu gas. 
It has been shown t h a t  bituminous coa ls ,  both caking and noncaking, w i l l  agglomerate 
when r ap id ly  heated i n  hydrogen a t  500 psig and 500" C o r  a t  6,000 ps ig  and 500° t o  
800° C (lo, 13, 14) .  
no t  agglomerate a t  500 p s i g  and 500' C. Chars produced from carbonizing bituminous 
coa ls ,  cokes, g raphi te  and an th rac i t e ,  and a h ighly  oxidized hvAb coa l  did not  
agglomerate. Feldmenn (i) observed t h a t  e t  l e a s t  1 0  pc t  of t he  v o l a t i l e  matter 
i n  P i t t sburgh  seam hvAb coa l ,  o r i g i n a l l y  containing 36 p c t  v o l a t i l e  matter, had 
t o  be  removed t o  obta in  a char t h a t  would not  agglomerate a t  1,000 p s i g  and 800° C 
i n  hydrogen i n  subsequent "hot-rod" r eac to r  t e s t s .  

Texas lignite agglomerated a t  6,000 ps ig  and 800' C bu t  d i d  

Lewis  and Hiteshue (15) designed an ent ra ined  flow reac to r  f o r  continuously 
hydrogenating both caking (hvAb) and noncaking (hvCb) coals.  
t h e  suspension of c o a l  i n  t h e  feed gas w a s  d i l u t e  enough ( d i l u t e  phase), pa r t i c l e -  

They be l ieved  t h a t  i f  
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p a r t i c l e  co l l i s ion  and subsequent agglomeration could be avoided. 
a l /&inch  ins ide  diameter, 60-foot long h e l i c a l  tube, and was operated a t  600 pSig 
and 800' C. 
hydrogen ve loc i ty  was 2 fps.  
because of so l id s  p lwg ing  a t  about t he  500 t o  550' C zone i n  the  h e l i c a l  tube. 
Changing t o  a s t r a i g h t ,  hor izonta l  tube r eac to r  having an i n t e r n a l  d i ane te r  of 5/16 
inches and a length of 20 f e e t  d id  not  a l l e v i a t e  t h e  plugging problem. 

The r eac to r  was 

The coa l  was en t ra ined  at  a rate of 60 g r s /h r  i n  hydrogen where t h e  
Experiments wi th  the  h e l i c a l  reac tor  were unsuccessful 

A 4-inch diameter v e r t i c a l  r eac to r  where t h e  coa l  p a r t i c l e s  would not  contac t  
t h e  r eac to r  wall  during devo la t i l i za t ion  w a s  found t o  opera te  very successfu l ly .  
It was fu r the r  shown t h a t  reducing the  diameter t o  l e s s  than 3 inches caused plugging, 
again due t o  coa l  p a r t i c l e s  contacting t h e  r eac to r  wall .  
l abora tory  dilute-phase r eac to r  t h a t  evolved fro= these  s tud ies .  

Figure 3 shows t h e  

A l a r g e  amun t  of k t n e t i c  da ta  has been reported f o r  t h i s  r eac to r  using 
Pi t t sburgh  seam hvAb and I l l i n o i s  1/6 hvCb coa l s  (5, a, l6, lJ). 
l abora tory  reac tor  and method of operation are discussed i n  the  previous references.  

De ta i l s  of t h e  

The present FDP reac to r  i s  a 3.26-inch in s ide  diameter pipe t h a t  is heated 
through the  wall  and contained i n  a 10-inch diameter pressure  she l l .  
i n j ec t ed  i n t o  the  top of t h e  r eac to r  through a 5/16-inch i n s i d e  diameter, water-cooled 
nozzle using a ro t a ry  feeder and p a r t  of t he  feed gas. 
a 5-foot long r eac to r  concurrently wi th  t h e  feed gas a t  a p a r t i c l e  res idence  t i m e  
of less than a second. Agglomeration is  avoided because t h e  rap id  hea t ing  d e v o l a t i l i z e s  
t h e  p a r t i c l e s  before many p a r t i c l e  c o l l i s i o n s  with t h e  wall o r  o the r  p a r t i c l e s  can 
occur. The char product is  recovered from a cooled hopper a f t e r  each experiment and 
is analyzed. Gas flows and compositions a r e  measured over steady state per iods  of 
t h e  experiment so t h a t  mass balances can be ca lcu la ted .  

Two-Stage Integrated Reactor 

Coal i s  

The coa l  f r e e - f a l l s  through 

In  order  t o  r e a c t  f r e sh  d i l u t e  phase char  with hydrogen a s  i n  t h e  in t eg ra t ed  
r eac to r  system described previously,  and t o  measure r e a c t i v i t y  and methane y i e l d  at 
carbon converaion l e v e l s  expected i n  a commercial r eac to r ,  a two-stage labora tory  
hydrogas i f ie r  w a s  b u i l t  cons i s t ing  of a dilute-phase r eac to r  i n t eg ra t ed  wi th  a 
second s t age  reac tor  t h a t  could be  operated a s  e i t h e r  a moving-bed o r  fluid-bed 
reac tor .  
t h e  diameter of t he  coa l  p a r t i c l e s  increased subs t an t i a l ly  due t o  swel l ing  and 
some agglomeration during devo la t i l i za t ion ,  a char crusher was used t o  reduce the  
p a r t i c l e  s i z e  t o  a level acceptable f o r  f lu id i za t ion .  In  t h e  moving-bed vers ion ,  
no crusher was used as shown i n  Figure 5. 

Figure 4 i l l u s t r a t e s  t h e  vers ion  using a fluid-bed second s tage .  Because 

The t rue  composition of product gas from t h e  ind iv idua l  s tages  could no t  be  
determined d i r ec t ly  because a l a r g e  amount of mixing occurred between gas near  t he  bottom 
of the  d i l u t e  phase r eac to r  and gas near t h e  top of t he  second s t age  r eac to r .  
o v e r a l l  methane y i e l d  f o r  t he  two-stage u n i t  was determined i n  some cases ,  and these 
y i e lds  were compared t o  y i e lds  from previous d i l u t e  phase r eac to r  experiments. 
mixing problem was not  unexpected s ince  t h e r e  w a s  no gas seal l e g  used between t h e  
two r eac to r s  because of t he  small s c a l e  of t h e  equipment. 
from convection cur ren ts  c rea ted  from t h e  f a l l i n g  char  p a r t i c l e s  and t h e  ho t  r eac to r  
w a l l s .  
d e t a i l  elsewhere (Is). 

The 

The 

The mixing was caused 

The operation of t he  twc-stage hydrogas i f ie r  is described i n  much g rea t e r  

KINETIC MODEL 

Within about t he  f i r s t  few inches of f r ee - f a l l  i n  the  FPD reac to r ,  t he  c o a l  
p a r t i c l e s  a r e  rap id ly  heated and devo la t i l i zed  y i e ld ing  a "popcorn" char  (E). 
is  genera l ly  accepted t h a t  during the  per iod  of devo la t i l i za t ion ,  chemical bonds 

It 



, 

such a s  methylene bridges,  oxygen bonds, and s i d e  cha ins  are e a s i l y  broken r e s u l t i n g  
i n  evolu t ion  o f  hydrogen r i c h  v o l a t i l e  matter and a l a r g e  number of f r e e  r a d i c a l  
s t r u c t u r e s  (2, 20, 21, 22). These f r e e  r ad ica l s  can r e a c t  wi th  hydrogen forming 
hydrocarbon gases and s o l i d  species t h a t  are a c t i v e  f o r  f u r t h e r  hydrogenation t o  
v o l a t i l e  ma te r i a l  or combine by polymerization t o  form a highly aromatic,  unreac t ive  
char s t ruc tu re .  During f r e e - f a l l ,  bu t  a f t e r  rapid devo la t i l i za t ion  has occurred 
( a f t e r  about 6 inches),  t h e  s o l i d  carbon is very r eac t ive  i n  behavior as though 
n o t  enough t i m e  has elapsed f o r  s i g n i f i c a n t  polymerization t o  proceed (2). 
when t h e  char i s  fu r the r  reac ted  with hydrogen in  a second-stage r eac to r  such a s  
a fluidized-bed or moving-bed, t h e  hydrogas i f ica t ion  rate i s  about two orders  of 
magnitude slower (1, g). Thus, the  coa l  s t r u c t u r e  and r e a c t i v i t y  change cons tan t ly  
during reac t ion .  

However, 

Feldmann (2) has proposed t h a t  f o r  k i n e t i c  modeling purposes t h e  carbon i n  t h e  raw 
coa l  can be  divided i n t o  th ree  types  during hydrogasification. Type 1 carbon i s  t h e  highly 
r eac t ive  spec ies  which is f lashed  of f  almost instantaneously during rap id  heat-up and 
devo la t i l i za t ion ,  Type 2 i s  t h e  s o l i d  carbon which readi ly  hydrogas i f ies  during most 
o f  t h e  p a r t i c l e  f r ee - f a l l ,  and Type 3 is  t h e  low-reactivity carbon contained i n  t h e  
remaining, polymerized char s t ruc tu re .  Johnson (23) has  proposed a very s imi l a r  model. 

In developing a r eac t ion  rate expression f o r  the  hydrogas i f ica t ion  of coa l  i n  
the  FDP r e a c t o r  (2). t h e  Type 1 carbon i s  assumed t o  d e v o l a t i l i z e  instantaneously 
and t h e  remainder of hydrogas i f ica t ion  occurs wi th  Type 2 carbon. 
be wr i t t en  as 

The r eac t ion  can 

1) Char + AH2 + CH4 

f o r  t he  d a t a  a t  high hydrogen p a r t i a l  p ressures  (PH 50-60 atm) (A), and a s ,  
2 

Char + AH2 + CHI, + O i l  + Light Hydrocarbons 2) 

f o r  da ta  a t  lower hydrogen p a r t i a l  p ressures  (5). An empir ica l  co r re l a t ion  of A ,  
t h e  s to i ch iomet r i c  coe f f i c i en t ,  has been developed from t h e  h igh  p res su re  d a t a  and 
is 

where x i s  t 

A =  

: t o t a l  

1.0 f o r  x < 0 . 4 5  

ax-2.6 f o r  0 . 4 5  x 5 0 .55  

1.8  f o r  x > 0.55  I 
'ac t i o n a l  carbon conversion. 

3) 

The o i l  y i e l d  h a s  been as h igh  a s  5X f o r  P i t t sburgh  s e a r  hvAb coa l  and 6% f o r  
A small amount of carbon oxides a r e  produced (usua l ly  l e s s  I l l i n o i s  /I6 hvCb coal.  

than 4% of the  product pas) and are i n  equilibrium according t o  the water-gas s h i f t  
reac t ion  a s  shown i n  F i p r e  6 .  

The hydrogas i f ica t ion  of Type 2 carbon follows the  r a t e  equation 

e - k P (a-x) 4 )  d t  H 2  

where x i s  the  f r a c t i o n a l  carbon conversion, P the  hydrogen p a r t i a l  pressure,  a t h e  
H2 

i 

i 
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f r ac t ion  of t he  carbon which is ava i l ab le  f o r  reac t ion  i n  the rep ine  being considered 
and k t h e  reac t ion  rate constant.  
devola t i l i zed  carbon is  not included i n  t h e  f r a c t i o n a l  carbon conversion i s  

Another way of wr i t ing  Equation 4 where t h e  

where 2 = (x-E)/(l-E) and B = (a-E)/(l-F). 
t h a t  was devola t i l i zed .  
r eac to r  a t t a i n  te rmina l  ve loc i ty  and the  same temperature a s  t he  r eac to r  wa l l  almost 
i w e d i a t e l y ,  Equation 4 may be appl ied  to  the  FDP r eac to r  a s  

E corresponds t o  the  f r a c t i o n  of carbon 
A s s d n g  the coal p a r t i c l e s  being fed t o  t h e  d i l u t e  phase 

'\ 

1 

where UT i s  the  p a r t i c l e  terminal velocity.  
length y ie ld ing  

Equation 6 is in t eg ra t ed  over t he  r eac to r  

X 

dx L 
'HZ 

E 

In  the  in t eg ra t ion ,  P B ~  i s  assumed constant and 
i n  the  product pas because extensive backmixing 
and t h e  downward flow of char. The f r ac t ion  of 
i n  the  in tegra t ion .  Within the  cons t r a in t  t h a t  

7) 

equal t o  the  hydrogen p a r t i a l  p ressure  
occurs due t o  t h e  h o t  r eac to r  wal l s  
Type 1 carbon is  accounted f o r  a s  E 
0 < a I 1. the  b e s t  f i t  of carbon 

~ 

conversion da ta  from t h e  FDP r eac to r  is obtained when a = 1 - ( 2 ) .  
e s sen t i a l ly  a l l  of t h e  carbon i s  ava i l ab le  f o r  hydrogasification. 

This  means t h a t  

The hydrogas i f ica t ion  of char i n  a "hot-rod", moving-bed, o r  fluid-bed reac tor  
follows the  8am.e rate expression given by Equation 4 ,  however, t he  reac t ion  i s  
much slower because most of the  carbon t h a t  i s  reac t ing  i s  of t he  Type 3 var ie ty .  
Application of Equation 4 t o  fluid-bed and moving-bed r eac to r s  has  been discussed 
elsewhere (E). 

The rate expression does not  take i n t o  account t r a n s i t i o n s  between the  various 
r eac t ive  types of carbon i n  t h e  coa l  nor mass t r a n s f e r  r e s i s t ance .  
hydrogasification of char i s  so complex because of the  change i n  carbon s t r u c t u r e  
during reac t ion ,  t h a t  t he  above simple c l a s s i f i c a t i o n  of carbon may no t  apply i n  a l l  
casea. 
char bu t  a160 adds another constant i n t o  t h e  w d e l w h i c h  mst b e  eva lua ted  using 
experimental data.  Generally the  more constants there  are in  a m.odel, t he  b e t t e r  
t he  model w i l l  f i t  regard less  of the  accuracy of t he  proposed r eac t ion  mechanism, and 
the  pore experimental da ta  is needed t o  eva lua te  the  constants.  Fo r  t h i s  reason, 
Equation 4 was kept simple so t h a t  da ta  from various r eac to r s  could be  e a s i l y  cor,pared. 
With t h i s  perspective,  t he  da ta  from each of the  reac tor  systems will now be discussed. 

In f a c t  the  

Johnson's model (23) takes in to  account the  continuous deac t iva t ion  of t he  

EWERIMENMI, RESULTS 

FLIP Reactor 

Using Equation 7 and a terminal ve loc i ty  of 9 fps ,  Feldmann (2) determined 
E and k values f o r  carbon conversion data a t  900' C and 725' C. These values are 
l i s t e d  in Table 1. 
a s  a function of hydrogen p a r t i a l  p ressure  and presented recent  850"-900° C ( t o t a l  

I n  a later publ ica t ion ,  Feldmann (2) reanalyzed the  725" C data 

k 
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TABLE 1.- FDP Reactor k i n e t i c  da t a  (2) 
~ ~~ 

Reactor Wall To ta l  Reactor k 
Temp., O C  Press., a t m  E, % atrn-lhr-l 

725 103,205 22 6 
900 205 1 4  21 

TABLE 2.-  U l t i m a t e  and proximate analyses  of feeds 

Coals Chars 
Run S e r i e s  HR-1 IIR-2 FDP HR-1c HR-2C 

W t . %  Pgh hvAb Pgh hvAb Pgh hvAb Ill. (16 hvCb Pgh hvAb Ill. C6 hvCb 
~ ~~~~ 

C 74.2 74.1 78.1 74.4 78.8 83.9 
H 5.1 5.1 5.3 5.2 1 . 9  2.8 
N 1.5 1.5 1.6 1 . 7  1.6 
S 1.9 1.5 1.1 1.3 1.1 
0 8.8 7.6 8.2 11.5 1.9 

--- 
--- 
--- 

Ash 8.5 10.2 5.7 5.9 14.7 10.2 
100 100 100 100 100 

Moisture 1.9 1.4 1 . 2  1.4 0 0.9 
26.0 VM 33.9 35.3 36.4 36.8 --- 

FC 56.5 53.1 56.7 55.9 

--- 

--- --- 

TABLE 3.- FDP Reactor k i n e t i c  da t a  

Reactor Wall, To ta l  Reactor Lc 
Temp., C Press., a t m  E, % atm-lhr-' 

725 103,205 23.1 5.3* 
725 103,205 9.4 14.7 

850-900 69-108 21.5 24. 7* 
850-900 69-108 12.2 33.0 I 

*Total carbon conversion. 

, 

J 



t 

I 

pressure  69-108 atm) da ta  (k). 
a r e  shown in Table 2 f o r  t he  FDP and "hot-rod" reac tors .  
carbon conversion da ta  as t o t a l  carbon conversion and a s  carbon conversion t o  
equivalent methane (carbon in methane and ethane).  

The ult imate and proximate analyses of t h e  feed coa l s  
Figures 7 and 8 show t h e  

The d i f fe rence  between t o t a l  carbon conversion and carbon conversion t o  methane 
is due mainly t o  t h e  production of carbon oxides and o i l .  
i s  a l s o  introduced in measuring the  flowrate and composition of t h e  feed and product 
gases,  and in recovery and ana lys i s  of the  s o l i d  and l i q u i d  products.  
run times were not  long enough t o  c o l l e c t  enough oil so t he  y i e l d  could be accura te ly  
measured (2). 
much lower than 100 pc t .  
w e l l  as reac tor  temperature g rea t ly  influences the  anount of o i l  produced, espec ia l ly  
below a p a r t i a l  p ressure  of 30 a t m .  
p a r t i a l  pressure agrees wi th  the  divergence of the two carbon conversion curves i n  
Figures 7 and 8. 
hydrocracking of t he  o i l  products. 
r eac to r  a l s o  a f f e c t s  t he  o i l  y i e ld  causinp lower amounts of o i l  a t  increas ing  
residence time as shown in Figure 10. 
determined by recovery from the  gas sample and main t a i l  gas streams. 
of the  o i l  w a s  l o s t  by condensation on t he  char r ece ive r  wa l l  and t o  some ex ten t  
on t h e  char in t h e  rece iver .  
where t h e  y i e ld  in t h e  gas sample stream is mult ip l ied  by the  r a t i o  of t he  t o t a l  
product gas flowrate t o  t h e  sample gas f lowra te  i n  order  t o  es t imate  t o t a l  o i l  y i e ld .  
These values w i l l  probably be higher than the  repor ted  values.  

Some experimental e r r o r  

@ften  the  

These e r r o r s  becove obvious when the  carbon and ash recoveries a r e  
Figure 9 ind ica tes  t h a t  t h e  hydrogen p a r t i a l  p ressure  as 

The increase  in oil y i e l d  wi th  decreasing hydrogen 

Apparently t h e  higher hydrogen p a r t i a l  p ressures  enhance t h e  
Residence time of the  hydrocarbon vapors in the  

A s  ind ica ted  in Figure  5 ,  t h e  o i l  y i e l d  was 
However, some 

Therefore t h e  oil y i e l d  d a t a  are now beinp reexamined 

The values of t h e  k i n e t i c  parameters in Equation 7 f o r  the  d a t a  in Figures 7 
and 8 are l i s t e d  i n  Table 3. 
conversion and f o r  carbon conversion t o  equivalent methane. The va lue  of a - 1 
gave t h e  b e s t  f i t  of t he  t o t a l  carbon conversion da ta  and w a s  subsequently used t o  
f i t  t he  carbon conversion t o  methane data. The terminal ve loc i ty  of a s i n g l e  char 
p a r t i c l e  was ca lcu la ted  using the equation 

= [ p g g  3 . 

These parameters were evaluated both f o r  t o t a l  

3.1g(Ps-P )ZP 1 / 2  
8) 

- 
d p U  

f o r  500 < ReD = peT C 200,000 (z), and- cor rec t ing  t h i s  va lue  f o r  the  e f f e c t  U, 
' 5  

of the  cloud oi p a r t i c l e s  (25). 
the  terminal ve loc i t i e s .  
900' C data  and 10.7 fps  (average of 9.9 and 11.5) f o r  t he  725" C data .  

Table 4 lists the  parameters used f o r  ca l cu la t ing  
A terminal ve loc i ty  of 16.5 fps  w a s  used f o r  t h e  850'- 

The t o t a l  r eac to r  pressure  has a l a r g e  inf luence  on t h e  terminal p a r t i c l e  
ve loc i ty  because the  pressure  determines f o r  the  most p a r t  t h e  s i z e  of t he  char  
p a r t i c l e s  produced and hence the  bulk and  p a r t i c l e  dens i t i e s .  This is  i l l u s t r a t e d  
in Figure 11 where t h e  char bulk dens i ty  is p lo t t ed  versus t o t a l  r eac to r  pressure.  
A s  t he  pressure  increases ,  the  bulk dens i ty  increases.  The bulk dens i ty  is higher 
when the  feed gas contains about 50 pc t  methane ins tead  of pure hydrogen. 
increasing the  r eac to r  pressure  dampens the  explosive en iss ion  o f  gases during the  
rap id  devo la t i l i za t ion  reac t ion .  A high concentration of hydrogen i n  t h e  r eac to r  
causes more of the  carbon t o  be reacted out of t he  p a r t i c l e  s t r u c t u r e  r e s u l t i n g  in 
a lower bulk dens i ty  char (and lower p a r t i c l e  dens i ty)  than is obtained when t h e  
reac tor  feed gas contains about 50 pc t  Eethane. Some char p a r t i c l e  s i z e  da t a  is 
l i s t e d  in Table 5 showing how increases  i n  r eac to r  temperature and pressure  cause 
decreases in t he  mean char p a r t i c l e  diameter. 

Apparently, 



TABLE 4.- Parameters used t o  ca l cu la t e  terminal ve loc i ty  
~~ ~~ 

Temperature, 
Pressure,  a t m  
- W, l b /h r  f t 2  
dp, i n .  
Pb, l b / f t 3  
ps*, l b / f t 3  

~~~ ~ 

C 725 
205 
165 

0.0521 
13.33 
36.8 

1.408 
0.05745 

3.3 
1264 
3.0 
9.9 

725 
103 
128 

0.0667 
8.0 

22.1 
0.7074 

0.05745 
4.1 

1010 
2.8 

11.5 

~~ 

900 
205 
145 

12.29 
33.9 

1.199 
0.06409 

2.8 
542 
3.0 
8.4 

0.0345 

900 
69 

207 
0.0660 

5.8 
16.0 

0.4035 
0.06409 

4.6 
573 
3.6 

16.5 

~~ ~ ~~ 

* Estimated by t h e  ratio of bu lk  d e n s i t i e s  and p a r t i c l e  dens i ty  of 16.0 l b / f t 3  

16 I 36.8. (26) f o r  char  produced a t  85O0-9OO0 C and 69 atm, e.g., 

**Ratio of te rmina l  v e l o c i t y  t o  s ing le  p a r t i c l e  terminal ve loc i ty  a t  a spec i f i c  
mass feed r a t e  per  u n i t  area (25). 

TABLE 5.- Effec t  of r eac to r  temperature and pressure  
on average char particle s i z e  

Averape Char P a r t i c l e  Diameter*. in .  

Press. ,  atm/Temp., C 750 - 800 850 - 900 

69 - 0.0735 0.0628 0.0537 
83  -- I- 0.0566 0.0501 

103 0.0667 -- -- 0.0485 
205 0.0521 0.0492 0.0529 0.0345 

, Pi t t sburgh  seam hvAb coa l ,  50 x 100 
mesh feed. P 
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The e f f e c t  of feed  r a t e  pe r  u n i t  reac tor  c ros s  sec t ion  on t h e  average char  
p a r t i c l e  diameter i s  s h a m  i n  F igure  12. 
r eac to r  diameter, t he  number of p a r t i c l e  c o l l i s i o n s  increase  and hence the  mean char 
p a r t i c l e  s i z e  inc reases  due t o  agglomeration. At a mass feed  rate of 221  W h r  f t2,  
Pi t t sburgh  seam coal  y ie lded  an average char  p a r t i c l e  diameter o f  1.70 mm (0.0669 
inches) compared t o  0.487 mm (0.0192 inches) f o r  char produced fron: I l l i n o i s  #6 hvCb 
coa l  under i d e n t i c a l  r eac to r  conditions.  
s ec t ion  of t he  two-stage in tegra ted  r eac to r  i s  l imi ted  by the  s i z e  o f  t he  char  
produced i n  t h e  d i l u t e  phase sec t ion  tha t  may be f lu id i zed  adequately i n  t h e  second- 
s t age  fluid-bed sec t ion .  
higher f o r  I l l i n o i s  coa l  than f o r  P i t t sburgh  coa l  because of the  smaller s i z e  char 
Particles produced. 

A s  t he  feed r a t e  is increased  f o r  a f ixed  

The maximum capac i ty  i n  t h e  dilute-phase 

Therefore, the  dilute-phase r eac to r  capac i ty  w i l l  be  much 

The feed rates pe r  u n i t  a r ea  i n  Figure 1 2  a r e  probably low because the  coa l  is  

A s  mentioned 
not completely d i s t r ibu ted  across  t h e  dilute-phase r eac to r  c ross  s e c t i o n  before rapid 
heat-up and devo la t i l i za t ion ,  when the  coa l  i s  suscept ib le  t o  cakinp. 
e a r l i e r ,  t h e  coa l  is fed  by a 5/16 inch diameter tube i n t o  a 3.26 inch  diameter reac tor .  
The p a r t i c l e s  h i t  t h e  w a l l  of t h e  r eac to r  about 12 inches down from the  end of the  feed 
nozzle. I f  devo la t i l i za t ion  i s  completed wi th in  6 inches from t h e  end o f  t h e  nozzle, 
a feed r a t e  ca lcu la ted  t o  be  300 lb s /h r  f t 2  of r eac to r  CKOSS s ec t ion  ac tua l ly  corresponds 
t o  a r a t e  of 1000 lb s /h r  f t 2  of  cross-sectional a r ea  occupied by the  p a r t i c l e s .  Data 
from a f r e e - f a l l  carbonizer (c), 1 2  inches i n  diameter, a t  the  Morgantown Energy 
Research Center, show t h a t  P i t t sbu rgh  coa l  w a s  processed a t  1000 l b s / h r  f t 2  and yielded 
char wi th  a mean diameter of about 0.508 m (0.02 inches) .  
through 200 mesh. 

1 

f 
The feed  coa l  w a s  70 pc t  

The reac t ion  rate cons tan ts  f o r  the  FDP reac to r  are shown on a n  Arrhenius p l o t  
i n  Figure 13. 
reac ted  appears t o  i n d i c a t e  t h a t  the  reac t ion  may be  cont ro l led  by mass t r a n s f e r  
of hydrogen t o  t h e  reac t ion  sites and not by the  r a t e  of hydrogas i f ica t ion .  
(2) has suggested t h a t  i n  t h e  higher temperature range t h e  r a t e  may be  b e t t e r  
described as propor t iona l  t o  kgPH2, where k 
hydrogen through the  gas f i lm surrounding t8e p a r t i c l e .  
a s t r a i g h t  l i n e  could have j u s t  as e a s i l y  f i t  t he  t o t a l  carbon conversion d a t a  i n  
Figures 7 and 8. 
flow reac to r  was determined by Zahradnik and Glenn (2) t o  be 15 kcal/mole, i n  
agreement with t h e  va lue  obtained i n  t h i s  work. 
energy represents  t he  d i f fe rence  i n  ac t iva t ion  energy between the  hydrogas i f ica t ion  
and polymerization reac t ions .  
ca l cu la t e s  k by in t eg ra t ing  Equation 7 from zero t o  x ins tead  of from E t o  x ,  shows 
some low temperature FDP data.  The a c t i v a t i o n  energy i s  29.8 kcal/mole f o r  temper- 
a tu re s  below 580' C ,  and decreases t o  6.4 kcal/mole f o r  temperatures above 580' C .  
The k values were ca lcu la ted  t h i s  way because E could not be determined f rog  the  
ava i l ab le  data and because P H ~  w a s  approximately constant.  
energy supports Feldmann's suggestion tha t  t he  reac t ion  is  mass t r a n s f e r  controlled.  
More comments w i l l  be  made on these  r e s u l t s  a f t e r  reviewing some low-temperature 
"hot-rod" reac tor  data.  

The r e l a t i v e l y  low ac t iva t ion  energy of 15.1 kcal/mole of carbon 

Feldmann 

i s  a mass t r a n s f e r  c o e f f i c i e n t  f o r  
This seems reasonable s ince  

The ac t iva t ion  energy f o r  carbon hydrogas i f ica t ion  i n  an en t ra ined  

They suggest t h a t  t h i s  ac t iva t ion  

An Arrhenius p l o t  of Feldmann's (L) i n  which he 

This change i n  ac t iva t ion  

The.data presented f o r  t he  FDP reac to r  a r e  based mainly on Pi t t sbu rgh  seam hvAb 
coal.  
a t i n g  proper t ies .  
could eas i ly  handle mildly caking coals.  
FDP r e s u l t s  on t h i s  c o a l  are shown i n  Figure 14. 
has no t  been s tudied  over a wide range of hydrogen p a r t i a l  p ressure  as has  t h e  
P i t t sburgh  coal,  but does appear t o  be more r eac t ive  based on comparison of t h e  
two coals i n  Figure 14  a t  the  same reac tor  conditions.  

This coa l  was s tudied  ex tens ive ly  because of i ts  extreme swel l ing  and agglomer- 
If the  r eac to r  could process badly caking coal than  su re ly  i t  

I l l i n o i s  16 hvCb coa l  is  mi ld ly  caking and 
The conversion of I l l i n o i s  coa l  

i 
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"Ho t-Rod" Reactors 

The results from t h e  "hot-rod" reac tor  tests of Hiteshue, Friedman, and Madden 
(L) w i l l  be  re fer red  t o  a s  HR-1 series when coa l  is used a s  t h e  s t a r t i n g  r eac t an t  
and HR-1C when char is used. 
r e fe r r ed  t o  as HR-2 and HR-2C series. The weight l o s s  and carbon conversion data 
a r e  shown i n  Figures 1 5  and 16, respectively.  f o r  the  HR-2 series exper i ren ts .  I n  
most of t he  HR-2 tests t h e  r e a c t o r  temperature was maintained low enough t h a t  Type 2 
carbon conversion appeared t o  occur over a period of about 6 minutes. Once t h e  
temperature exceeded about 600" C, Type 3 carbon w a s  rap id ly  formed. 
a t  which t h e  curves i n  Figure 1 5  o r  16 appear t o  l e v e l  off correspond t o  the  
t r a n s i t i o n  poin ts  a t  which t h e  hydrogasification occurs predominately with Type 3 
carbon. For the  tests a t  800° C, the  devo la t i l i za t ion  and Type 2 carbon conversion 
both occur i n  less than a minute. 
a r e  p l o t t e d  on the  same Arrhenius graph with the  FDP d a t a  i n  Figure 13. For the  da ta  
up t o  600" C ,  Equation 4 w a s  i n t eg ra t ed  s t a r t i n g  from zero carbon conversion, and the  
va lues  of k and a were determined from a least-squares f i t  of t he  da ta  (E w a s  found 
t o  be very c lose  t o  zero  i n  t h e  regress ion  ana lys i s  f o r  temperatures below 520' C). 
For the  800" C da ta ,  t h e  i n t e g r a t i o n  was s t a r t e d  from E with a = 1, and aga in  k and 
E were determined from a least-squares ana lys i s  of the data. The va lues  of these  
parameters are l i s t e d  i n  Table 6. 
d a t a  in Figure  15. As i s  obvious in Figure 16, t h e  carbon conversions ca lcu la ted  
from t h e  carbon analyses were no t  cons is ten t  a t  425" C and 69 atm wi th  e i t h e r  t he  
t o t a l  conversion data i n  F igure  15 o r  d a t a  at  35 a t m .  Therefore, t h e  carbon gas i f i -  
ca t ion  r a t e  constant a t  425' C w a s  ca lcu la ted  by ex t rapola t ing  the  l i n e  obtained when 
k i s  p lo t t ed  versus $ ( r a t e  cons tan t  f o r  t o t a l  conversion). 
can a l s o  be estimated by assuming the  curve must pass through 0.0588 (average of two 
da ta  poin ts )  a t  6 minutes. This method gives a k value of 0.255 atm-l hr-' compared 
to 0.365 arm-? 'nr-lby ex t r apo la t ion ,  

Unpublished da ta  of Feldmann and Williams w i l l  be 

The conversions 

This is mre c l e a r l y  v i s i b l e  when t h e  r a t e  constants 

The model was a l s o  f i t  t o  t h e  t o t a l  weight l o s s  

The k va lue  a t  425' C 

In  the  Arrhenius p l o t  of F igure  13, the  low temperature "hot-rod" r eac to r  da ta  
appears t o  be  cons is ten t  with t h e  dilute-phase r eac to r  data.  Unfortunately, low 
temperature FDP da ta  is very d i f f i c u l t  t o  obtain i n  order  t o  ve r i fy  the  low temper- 
a t u r e  "hot-rod'' r eac to r  da ta  because of agglomeration and plugging. 
temperature "hot-rod" r eac to r  d a t a  cannot ve r i fy  t h e  FDP da ta  because t h e  heat-up 
r a t e  and residence t i m e s  a r e  such t h a t  they opera te  in d i f f e r e n t  carbon conversion 
regimes. The key d i f f e rence  between t h e  FDP r e a c t o r  and the  "hot-rod" r eac to r  is 
t he  coa l  heat-up r a t e .  
whereas i n  t h e  "hot-rod" r e a c t o r  t h e  rate is about 7' C/sec. 
temperature quickly enough, t h e  k i n e t i c s  of Type 2 carbon hydrogas i f ica t ion  can be 
observed . 

The high 

In  t h e  FDP reac to r  t h i s  rate is on the  order  of 1000° C/sec 
By achieving reac t ion  

The carbon conversion da ta  f o r  the HR-1 series e x p e r b e n t s  a r e  shown i n  Figure 17 .  
In these  tests the  d e v o l a t i l i z a t i o n  and Type 2 carbon conversion occurred i n  less 
than a minute because of  t h e  high temperatures. 
p a r t  represent  Type 3 carbon conversion. Johnson (23) has  observed i n  thermobalance 
experiments t h a t  devo la t i l i za t ion  and Type 2 carbon conversion a r e  e s s e n t i a l l y  complete 
wi th in  2 minutes a t  temperatures above about 800" C. 
balance t e s t s  was about t h e  same as in t h e  "hot-rod" r eac to r  tests. The HR-1 s e r i e s  
d a t a  were f i t  using Equation 4 with a = 1 and in t eg ra t ion  s t a r t i n g  from E. 
parameters a r e  l i s t e d  i n  Table 7. 
t h e  carbon beyond the  f r a c t i o n  E is Type 3. 
and 2 carbon. 

Therefore the  curves f o r  t he  most 

The heat-up r a t e  i n  t h e  thermo- 

The k ine t i c  
Choosing a = 1 simply means t h a t  e s s e n t i a l l y  a l l  

Here E represents  t he  sum of Types 1 

Figure  18 i l l u s t r a t e s  the  e f f e c t  of the  r eac to r  temperature on the  amount of 
carbon t h a t  can be hydrogasified as Types 1 and 2. High temperatures and hydrogen 

I 

1 



I 

I 

t 

113 

TAELC 6.- Kinet ic  paraae ters  f o r  UR-2 series data 

Temp., * C 

425 
470 
490 
520 
600 
600 
800 
800 

PI! , a t n  

69 
69 
69 
69 
69 
69 
69  
69 

a 

.071* 

.189 

.199 

.179 

.232 
1.0 

.315 
1.0 

E 

0 
0 
0 
0 
0 

.175 
0 

.243 

- 
1; 

atv-lhr-l 

0.383* 
0.447 
0.625 

1.47 
0.976 

0.00751 
1.22 

0.0123 

UT** 

.099 

.261 

.278 

.264 

.272 

.344 

- 

--- 
--- 

%** 
a t r - l  hr-‘ 

’ 0.510 
0.504 
0.838 

2.07 
1.08 

1.66 
-- 
-- 

* Extrapolated usinp t o t a l  conversion kT values.  
is 0.255 atn-lhr- . Ey another method, t h e  k value 

** Subscript  T i nd ica t e s  t o t a l  conversion parape ters  ( t o t a l  weipht loss). 

TABLE 7.- Kinet ic  paraue ters  f o r  ER-1 s e r i e s  da ta  

1. 
a E atv-lhr-l  PH , a t r  - Tenp., a C 

800 18.0 1.0 .252 0.0282 
800 35.0 1.0 .355 0.0154 
800 69.0 1.0 .A50 0.0160 

1200 4.1 1.0 .298 0.363 
1200 18.0 l.@ .377 0.137 
1200 35.0 1.0 .514 0.350 

TABLE 8.- Ef fec t  of hydropen p a r t i a l  p ressure  on car ton  conversion 
in the  hot rod r eac to r  

Test  

BR-1 
HR-1 
HR-1 
m-2 
m-2 
ER-2 
IIR-2 
HR-2 
HR-2 
HR-2 

- Tenp.. C 

800 
800 
800 
500 
490 
600 
600 
700 
800 
800 

Fp,, ata 

18 
35 
69 
35 
69 
35 
69 
35 
35 
69 

Carbon Conversion, pe t  
1 p i n .  2 pin. 5-6 c in .  
--- --- 30.7.25.7 --- --- 39.4,40.4 --- --- 52.0,55.5,52.6,54.6 
9.10 12.1 --- 
10.4 14.5 --- 
17.6 18.4 --- 
17.5 17.9 --- --- 21.0 --- 
23.7 24.3 31.2 
25.6 25.8 33.9 



p a r t i a l  pressures result i n  a l a r g e  amount of carbon being hydrogasified i n  t h e  Types 
1 and 2 regime.. 
p a r t i a l  p ressure  of 500 a m  and 900' C, t he  carbon is r ap id ly  gas i f i ed  t o  completion. 

There is a l a rge  d i f f e rence  i n  the  l e v e l  of Types 1 and 2 carbon conversion 

In  f a c t  Moseley and Paterson (22) have shown t h a t  a t  a hydrogen 

between t h e  HR-1 da t a  a t  800' C and t h e  corresponding HR-2 tests. 
is s h a m  i n  Table 8 and is espec ia l ly  not iceable  at 800" C and 69 atm. 
condi t ions  the  conversions from t h e  HR-1 t e s t s  range from 52 t o  54.6 p c t  a t  a 
residence t i m e  of 5 minutes whereas the  corresponding conversions f o r  the  HR-2 
tests ranged from 31.2 t o  33.9 p c t  at  a residence time of 6 minutes. 
response o f  conversion t o  changes i n  hydrogen p a r t i a l  p ressure  i n  t h e  HR-2 tests 
suggests t h a t  the r eac t ion  r a t e  was s t rongly  mass t r a n s f e r  cont ro l led .  
v e r i f i e d  by comparing t h e  gas v e l o c i t i e s  i n  the  HR-1 and HR-2 experiments i n  Table 
9. I n  t h e  HR-1 t e s t s  t h e  s u p e r f i c i a l  hydrogen feed gas  ve loc i ty  was 36 cm/sec 
compared t o  a ve loc i ty  o f  1 t o  2 cm/sec i n  t h e  HR-2 tests. Apparently the  pas 
ve loc i ty  w a s  low enough i n  t h e  HR-2 tests t h a t  a t  the higher temperatures t h e  mass 
t r a n s f e r  r e s i s t ance  through t h e  p a r t i c l e  gas f i lm was s i g n i f i c a n t .  
slower p a r t i c l e  heat-up r a t e  may have cont r ibu ted  t o  t h e  d i f fe rence  i n  conversions. 
Anthony (2) has demonstrated, however, t h a t  varying the  hea t ing  r a t e  from 180 t o  
10,000" C/sec has no e f f e c t  on t h e  coa l  conversion. 
and more highly dispersed samples t o  be extremely important because t h e  f l u x  of 
v o l a t i l e s  emerging from t h e  coa l  particle may l i m i t  t h e  counter d i f fus ion  of hydrogen 
i n t o  the  p a r t i c l e .  
r eac t ion  t o  compete with polymerization reac t ions  t h a t  produce a r e l a t i v e l y  inac t ive  
char.  

This discrepancy 
Under these  

The l ack  of 

This can be 

In addi t ion ,  the  

H e  found smaller p a r t i c l e  sizes 

This r e s t r i c t i o n  makes i t  d i f f i c u l t  f o r  t he  hydrogas i f ica t ion  

I n  Table 10  the  Types 1 and 2 carbon conversion f o r  FDP and "hot-rod" r eac to r  
t e e t e  ere coxqare:. The HR-2 tests were d e f i n i t e l y  mass t r a n s f e r  cont ro l led  whereas 
i t  is d i f f i c u l t  t o  conclude t h i s  i n  the  FDP tests compared t o  t h e  HR-1 tests because 
of t h e  l a r g e  d i f fe rence  i n  res idence  t i m e .  
w a s  less than 1 second and i n  t h e  "hot-rod" r eac to r  i t  was two orders of magnitude 
g rea t e r .  
a f t e r  about 3 seconds at 69 arm, 900' C, and a heating r a t e  of 750' C/sec. 
coa l  p a r t i c l e  s i z e  was 70 microns compared t o  about 220 microns i n  t h e  FDP experiments. 
Therefore Types l a n d  2 carbon conversion i n  the  FDP tests probably d i d  not  reach 
completion. 

I n  the  FDP reac to r  t he  residence t i m e  

Anthony (2) has  s h a m  t h a t  Types 1 and 2 carbon conversions are complete 
His s t a r t i n g  

Photographs of some of t h e  c h a r s  under a scanning e l e c t r o n  microscope revea l  the  
porous s t r u c t u r e  produced i n  the  FDP and "hot-rod" r eac to r s  under various conditions. 
F igure  19 compares chars  produced i n  the  FDP reac to r  a t  725' C ,  205 a t m  ( top - l e f t ) ,  and 
a t  850° C, 69 a t m  (bottom-left). The char  produced a t  69 a t m  appears t o  be  much more 
porous and less dense than t h e  char made a t  205 atm. As discussed previously,  this 
e f f e c t  shows up as  a l a r g e  d i f f e r e n c e  i n  bulk density.  

F igure  20 compares chars  produced i n  the  "hot-rod" r eac to r  a t  600' C, 69 a t m  
(bottom) and a t  800° C, 69 a t m  ( top)  a t  d i f f e r e n t  residence times. The low temperature 
char  has  nuch l a rge r  pores whi le  t h e  high temperature char  has  a l a r g e r  number of very 
small pores. 
rate o f  v o l a t i l e  matter from t h e  p a r t i c l e s  reac ted  a t  800' C. I n  addi t ion ,  t h e  super- 
f i c i a l  hydrogen ve loc i ty  i n  t h e  600° C test was 0.9 cm/sec versus 1.1 cm/sec i n  the  
800' C t e s t .  
counterd i f fus ion  of hydrogen i n t o  t h e  char  s t r u c t u r e  r e s u l t i n g  i n  l e s s  Competition 
f o r  t h e  polymerization reac t ion .  Comparison o f  t he  FDP and "hot-rod" char Samples 
ind ica t e s  t h a t  the  pore s t r u c t u r e  of the  FDP char is more h ighly  developed with pores 
having t h i n  walls.  
t h a t  t h e  g ross  pore s t r u c t u r e  is n o t  a s  clear as poss ib le .  

This d i f f e rence  i n  t h e  pore size is probably r e l a t e d  t o  the  higher emission 

Both these  condi t ions  (high v o l a t i l e s  emission, low gas ve loc i ty )  l i m i t  

The samples i n  Figure 20 were crushed t o  100 pct t h ru  60 mesh 80 

, 
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TABLE 9.- Effect of hydrogen velocity on carbon conversion 
in the hot rod reactor at 800' C 

pH , atm 132 velocity Average Carbon 
Series Sample 2 cmf sec Conv.. % 

HR-1 Pgh. hvAb Coal 35 36.6 39.9 

HR-1 Pgh. hvAb Coal 69 36.6 53.7 
HR-2 Pgh. hvAb Coal 69 1.11 33.9 

HR-2- Pgh. hvAb Coal 35 2.19 31.2 

HR-lC Pgh. hvAb Char 69 36.6 31.4 
HR-2C Ill. 16 hvCb Char 69 1.11 31.2 

Residence 
Time, min. 

5 
6 
5 
6 
15 
15 

TABLE 10.- Comparison of types 1 and 2 carbon conversion 
in the FDP and "Hot-Rod" Reactors 

Carbon Conv., % PH , atm Tests 
FDP* 35.0 27.2 
pDP* 69.0 32.2 
HR-1** 35.0 33.2, 32.8 
HR-1** 69 .n 38.5, 40.3 
HR-2** 35.0 23.7 
HR-2** 69.0 25.6 

- 

*From Figure 8, 850'-900" C. 
**800° C. 

TABU 11.- Kinetic parameters for HR-1C series data 

k 
7 a E atm-lhr'' 

PH , atm - Temp,, C 
800 18.0 1.0 .009 .0234 
800 35.0 1.0 .027 .0178 
800 69.0 1.0 .144 .0110 
800 69.0 1.0 .136 .0137* 

*HR-SC data. 
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Figure  2 1  shows t h e  char  samples from FDP tests a t  850° C and 69 a t m  using a 
l ignite coa l  f e e d ,  
s t r u c t u r e  obtained w i t h  bituminous coal. 
with l i g n i t e  (coal p a r t i c l e  a l s o  i n  Figure 21), the  pene t ra t ion  of  hydrogen i n t o  the  
p a r t i c l e  is  poorer compared t o  bituminous coal. 
have an even s t ronger  inf luence  on t h e  hydrogasif icat ion of lignite than with bituminous 
coals .  

The pore s t r u c t u r e  appears very undeveloped compared t o  t h e  
Because of the  l a c k  of p a r t i c l e  swel l ing 

Consequently, p a r t i c l e  s i z e  should 

The char  data  i n  Table 9 are very  i n t e r e s t i n g  because the  s u p e r f i c i a l  hydrogen 
v e l o c i t y  had no  e f f e c t  on t h e  carbon conversion. 
char  p a r t i c l e s  must b e  l a r g e  compared t o  t h e  char-hydrogen r e a c t i o n  rate. This i s  
not s u r p r i s i n g  since t h e  r e a c t i o n  r a t e  of Type 3 carbon is very slow, probably much 
slower than t h e  d i f fus ion  rates of hydrogen and gaseous reac t ion  products. 

The mass t r a n s f e r  rate i n t o  t h e  

The results o f  HR-1C series experiments with char produced from Pi t t sburgh  seam 
hvAb coa l  are shavn i n  F igure  22. 
except  f o r  a small amount of  rap id  i n i t i a l  conversion. The k i n e t i c  parareters f o r  
these  da ta  are l i s t e d  i n  Table 11. 
a l s o  shown i n  Table 11 and Figure  22, and agree w e l l  wi th  t h e  HR-1C data. The two 
chars  are d i f f e r e n t  i n  that t h e  HR-2C char  was  produced from I l l i n o i s  #6 hvCb coa l  
i n  t h e  d i l u t e  phase r e a c t o r  at 585' C whereas t h e  HR-1C char  was produced from 
Pi t tsburgh seam hvAb coal by batch carbonizat ion f o r  2 hours  i n  helium a t  600° C. 
The HR-2C char  contained about 26 p c t  v o l a t i l e  matter compared t o  the  o r i g i n a l  36.5 
pc t  volatile matter  i n  the  s t a r t i n g  coal. 
near ly  equal  d e v o l a t i l i z a t i o n  temperatures, the r e a c t i v i t i e s  of t h e  two chars  are 
e s s e n t i a l l y  t h e  same. 
could have resu l ted  i n  t h e  chars  having d i f f e r i n g  r e a c t i v i t i e s  (23, 2). 

The carbon conversion is of t h e  Type 3 spec ies  

The results o f  the  HR-2C series experiments are 

Despite these d i f fe rences ,  except f o r  the  

A s i g n i f i c a n t  d i f fe rence  i n  t h e  d e v o l a t i l i z a t i o n  temperatures 

The Arrhenius graph i n  F igure  13 summarizes the r e s u l t s  f o r  a l l  the  coa ls  and 
chars  tes ted  and Includes some of Johnson's data  (23) which was adjusted t o  c a l c u l a t e  
k values  according to Equation 4. Assuming tha t  i t  i s  v a l i d  t o  represent  the low 
temperature "hot-rod" r e a c t o r  d a t a  by t h e  same Arrhenius l ine  as the  FDP da ta ,  t h e  
a c t i v a t i o n  energy f o r  hydrogas i f ica t ion  of Type 2 carbon is 15.1 kcal/mole of carbon 
gas i f ied .  
magnitude lower than t h e  rate o f  hydrogasif icat ion of Type 2 carbon. The a c t i v a t i o n  
energy f o r  t h e  HR-1, HR-lC, and HR-2C d a t a  is 24.7 kcal/mole of carbon g a s i f i e d  (Type 3 
carbon) compared to a value of 47.1 kcal/mole obtained by Johnson (23) using a thermo- 
balance. A t  600Oand 800' C ,  t h e  HR-2 d a t a  was complicated by t h e  t r a n s i t i o n  t o  Type 3 
carbon conversion and a s i g n i f i c a n t  amount of mass t r a n s f e r  res i s tance .  
temperatures t h e  apparent a c t i v a t i o n  energy f a l l s  o f f  considerably as shown i n  Figure 
13. 

Two-Stage Integrated Reactor 

The hydrogasif icat ion rate of Type 3 carbon is about t h r e e  orders  of 

A t  these  higher 

The results of t h e  two-stage tests where t h e  f i r s t - s t a g e  was a FDP r e a c t o r  and 
the second-stage e i t h e r  a moving-bed o r  fluid-bed reac tor  have been presented else- 
where @). 
p l o t t e d  .in F igure13 .  
caused the  t r u e  p a r t i c l e  temperature t o  be higher  than the  measured temperature, 
the  a c t i v a t i o n  energy of  the  moving bed d a t a  is low, and t h e  r a t e  constant  values  are 
r e l a t i v e l y  high at  t h e  lower r e a c t o r  temperatures. 

Correlat ion of Char Yield and Coal H. N, S. and 0 Conversion Data 

The k i n e t i c  r e s u l t s  a r e  summarized i n  Tables 12,  13, and 14 and are a l s o  
Because h e a t  t r a n s f e r  l i m i t a t i o n s  within t h e  char p a r t i c l e s  

I n  order  t o  p r e d i c t  the  conversion of o ther  cons t i tuents  i n  t h e  coal  during 
hydrogas i f ica t ion  bes ides  carbon conversion, results from ninety-f ive experiments 

1 
I 

I 

1 

1 
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TABLE 12.- Kinetic results from two-stage integrated reactor 
experiments (18) at 69 atm 

k Moving Fluid 
Total C Bed C Bed C Bed 

- Run Conv., X Conv., Z* Conv., Z* Temp., O K  atm-lhr-l 
2 0.552 --- 0.378 1158 0.0145 
3 0.536 --- 0.356 1158 0.0284 
5 0.558 --- 0.345 1158 0.0316 
11 0.608 --- 0.419 1073 0.0450 
12 0.551 --- 0.335 1118 0.0202 
13 0.556 --- 0.383 1113 0.0218 
14 0.537 --- 0.357 1183 0.0139 
33 0.620 0.457 --- 1178 0.0573 
37 0.392 0.131 --- 1173 0.0360 
38 0.485 0.264 --- 1148 0.0396 
39 0.417 0.167 --- 918 0.0449 
43b 0.430 0.186 --- 1038 0.0395 
44b 0.391 0.130 --- 923 0.0260 
4 5b 0.406 0.151 --- 933 0.0307 
46a 0.399 0.151 --- 957 0.0305 
48 0.511 0.301 --- 1073 0.0299 
49 0.536 , 0.337 --- 988 0.0358 



TABLE 13.- Hydrogasification of I l l i n o i s  16 hvCb coal  i n  a two-stage 
r eac to r  a t  1000 p s i g  - run condi t ions 

Test  46 48 49 
Reactor Zone FDP* MB* FDP MB FDP MB 
Temp., C 850 684 850 800 850 715 
Coal o r  Char Rate, l b (d ry ) /h r  10.51 6.68 10.26 5.08 10.32 5.01 

36 Bed Height, i n .  --- 0 - 36 - 
Residence Time, min. -- 0 -- 10.4 -- 10.4 
Feed Gas, SCFH 164.4 141.4 181.7 152.0 166.2 150.7 

Vol. Pct .  H2 56.2 99.4 52.0 99.0 50.9 98.6 
37.2 -- 42.1 --- 42.8 - m4 
1.05 0.50 1.10 1.00 1.50 1.30 

He 5.45 -- 4.70 -- 4.70 -- N2 

Product Gas, SCFH** 168.6 141.4 179.0 124.6 169.8 130.3 
Vol. Pct.  H2 34.8 99.4 32.4 54.2 30.1 58.0 

CH4 55.1 -- 57.2 43.5 58.0 39.0 
Run Time, min. 187 193 187 

* FDP: 

**For runs 48 and 49, t he  ind iv idua l  product pas f lowrates  and t h e  composition of the 

free-fal l  d i l u t e  phase r eac to r  (3  foo t  heated l eng th ) ;  MB: moving-bed reactor.  

MB product gas p r i o r  t o  mixing were estimated using t h e  helium t r a c e r  data ,  

TABLE 14.- Hydrogasification of I l l i n o i s  16 hvCb coal  i n  a two-stape 
r eac to r  a t  1000 p i p .  - r e s u l t s  

T e s t  HY 46 48 49 
Conversion, w t .  p c t .  

MAF coal  43.1 60.2 60.4 
C 33.0 50.7 53.6 
H 75.4 96.4 93.4 
S 66.7 74.8 76.3 
N 59.4 89.7 86.4 
0 91.0 99.6 90.0 

CH4 3.01 7.80 7.58 
C2H6 0.11 0.17 0.13 
co 0.43 0.69 0.80 

H2 -3.21 -11.63 -10.31 
H2S* 0.04 0.03 0.07 

Oil Yield, l b / l b  d r y  coal 0.048 0.041 0.026 
Carbon t o  Gas and O i l s ,  w t .  pct .  24.3 47.7 44.2 

Gas Yields,  SCF/lb dry coa l  

co2 0.10 0.09 0.11 

Mean Char P a r t i c l e  Diameter, m 0.433 -- 0.397 

* About SOX of t h e  converted s u l f u r  appears i n  t h e  gas product a f t e r  
water scrubbing. 
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i n  t h e  FDP reac to r  and FDP-Fluid Bed in tegra ted  r eac to r s  were co r re l a t ed  wi th  carbon 
conversion t o  y i e ld  Figures 23-26. The co r re l a t ions  i n  Figures 23-25 show t h a t  char 
y i e l d  and r e m v a l  of coa l  hydrogen and n i t rogen  can be accura te ly  ca l cu la t ed  from 
carbon conversion, independent of r eac to r  conditions and poss ib ly  geometry. 
carbon conversions above 20 p c t  ( e s sen t i a l ly  devo la t i l i za t ion )  t he  oxygen removal 
usua l ly  exceeds 90 pc t  and can be considered t o  be  complete. The da ta  f o r  s u l f u r  
removal are very sca t t e red ,  poss ib ly  because of t he  e r r o r  i n  determining changes 
in smal l  amounts of s u l f u r  i n  t h e  coa l  and char  samples. 
s u l f i d e  t h a t  is formed may be i n  e q u i l i b r i u n w i t h  s u l f u r  i n  the  char such t h a t  a 
Simple co r re l a t ion  wi th  carbon conversion i s  not  poss ib le .  

For 

In addi t ion ,  t h e  hydrogen 

In Figure 27, t h e  char y i e l d s  have been recomputed in terms of Y F  conversion 
so t h a t  t he  r e l a t ionsh ip  between carbon conversion and MAF conversion can be  
shown. A curve is drawn through the  da ta  such t h a t  i t  bows away from the  u n i t  
s lope  l i n e  and passes through (0.0) and (100,100). 
covered t h e  carbon conversion range 22-55 pc t  a0 t h a t  €o r  s impl i c i ty  a s t r a i g h t  l i n e  
was used t o  f i t  t he  data. As the  range is widened, however, i t  becomes obvious t h a t  
a curve gives a b e t t e r  c o r r e l a t i o n  of the  data.  

The d a t a  i n  Figures 23-25 only 

The carbon conversion r an re  covered by the  HR-1 and IIR-2 series experirrents is 
complete, ranging from 0 t o  95 pc t .  In Figure 28, t he  MAF conversion is  p l o t t e d  
versus  carbon conversion and e s s e n t i a l l y  the  sme curve as used i n  F igure  27 f i t s  
these  results. 
cons t i t uen t  conversions wi th  carbon conversion a r e  no t  only independent o f  r eac to r  
conditions,  but a l s o  r eac to r  geometry. 
p l o t  f o r  t h e  HR-1C and HR-2C series char  tests. 
does no t  include t h e  carbon t h a t  w a s  l o s t  during devo la t i l i za t ion  o f  t h e  coa l  t o  
prepare t h e  char. 

Based on these  curves it appears t h a t  t he  co r re l a t ions  of coa l  

Figure 29 shows a s imi l a r  MAF-carbon conversion 
The carbon conversion i n  F igure  29 

The conversion of coal 11, N, and S in t h e  HR-1 and HR-2 series experiments 
a r e  shown i n  Figures 30-32. 
H and N d a t a  determined previous ly  a r e  shown t o  be inadequate over a very  wide 
range of carbon conversion. 
a r e  concave downward, s i m i l a r  t o  the  MAF curves. 
the  co r re l a t ion  with carbon conversion still appears t o  b e  va l id .  
FDP and Two-Stage r eac to r  experiments, u l t imate  analyses were no t  run on t h e  coa l  
feed  f o r  each test, but  only on the  e n t i r e  ba tch  of coal.  
segregation in t h e  feeds  could have occurred causing scatter i n  t h e  ca l cu la t ion  
of t he  H ,  N, and s u l f u r  conversions. These cons t i t uen t s  are present  in r e l a t i v e l y  
small amounts and thus t h e i r  ca lcu la ted  conversions are very s e n s i t i v e  t o  f luc tua t ions  
i n  t h e  feed composition. The s u l f u r  da t a  i n  Figure 32 shows a more d e f i n i t e  trend 
wi th  carbon conversion than w a s  ev ident  i n  F igure  26 and shows t h e  la t ter  co r re l a t ion  
t o  be  conservative. Work is planned t o  extend the  l i n e a r  co r re l a t ions  i n  Figures 23-26 
t o  a regression curve t h a t  w i l l  f i t  a l l  o f  t h e  data,  i.e., FDP, HR-1, HR-2, and the  
Two-Stage reactors.  These r e l a t ionsh ips  a r e  very valuable i n  scale-up design ca lcu la t ions  
because t h e  displacement of t h e  v o l a t i l e  elements i n  the  coa l  and the  char y i e l d  can 
be accura te ly  pred ic ted  f o r  t h e  p l a n t  flowsheet. 

In Figures 30 and 31, t h e  s t r a i g h t  l i n e  f i t s  of t he  

These sets of da t a  a r e  both f i t  b e s t  w i th  curves t h a t  
Despite t h e  s c a t t e r  i n  the  da ta ,  

Unlike i n  the  

Consequently, some 

E 
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NOMENCLATURE 

a 

E 

x 

pH2 

Re 
P 

t 

'TS 
w 
X 

z 

f r ac t ion  of t h e  carbon t h a t  is ava i l ab le  f o r  reac t ion  in t he  regime being 
considered. 

f r ac t iona l  weight l o s s  t h a t  can be achieved in t h e  reac t ion  regime being 
considered. 

same a s  a except t h e  Type 1 carbon is excluded. 

s to ich iometr ic  c o e f f i c i e n t  f o r  the char-hydrogen reaction. 

gas Viscosity,  l b / f t  hr. 

char bulk dens i ty ,  l b / f t 3 .  

gas density,  l b / f  t 3.  

char  particle dens i ty ,  l b / f t 3 .  

mean char p a r t i c l e  diameter, in. 

f r ac t ion  of carbon instantaneously devola t i l i zed .  

g rav i t a t iona l  acce le ra t ion ,  f t / s ec2 .  

char-hydrogen r e a c t i o n  r a t e  cons tan t ,  atm-' hr-l.  

weight l o s s  r e a c t i o n  rate constant,  atm-' hr-l.  

reac tor  length ,  f t .  ' 

p a r t i a l  p ressure  o f  hydrogen, atm. 

char particle Reynolds number. 

t i m e ,  sec. 

f ree- fa l l  ve loc i ty  of char p a r t i c l e s ,  fps.  

s ing le  char p a r t i c l e  terminal ve loc i ty ,  fps.  

coa l  mass feed  r a t e ,  l b /h r  f t 2 .  

f r ac t iona l  carbon conversion based on t o t a l  coa l  carbon. 

f r ac t iona l  carbon conversion based on s t a r t i n g  char carbon. 
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